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ABSTRACT 

Translocation is an important class of structural variants known to 

be associated with cancer formation and treatment. The recent 

development in single-molecule sequencing technologies that 

produce long reads has promised an advance in detecting 

translocations accurately. However, existing tools struggled with 

the high base error-rate of the long reads. Figuring out the correct 

translocation breakpoints is especially challenging due to 

suboptimally aligned reads. To address the problem, we developed 

Translocator, a robust and accurate translocation detection method 

that implements an effective realignment algorithm to recover the 

correct alignments. For benchmarking, we analyzed using 

NA12878 long reads against a modified GRCh38 reference genome 

embedded with translocations at known locations. Our results show 

that Translocator significantly outperformed other state-of-the-art 

methods, including Sniffles and PBSV. On Oxford Nanopore data, 

the recall improved from 48.2% to 87.5% and the precision from 

88.7% to 92.7%. Translocator is available open-source at 

https://github.com/HKU-BAL/Translocator.  
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1 Introduction 

Translocation, often referred to as its abbreviation “TRA”, is a 

type of structural variants (SV) defined as reciprocal exchange of 

parts at least 50 base-pairs (bp) in size between non-homologous 

chromosomes [1]. Translocations were found to play an important 

role in the early steps of tumorigenesis [2-4]. At the molecular 

level, the consequence of translocation is manifold. For example, 

the regulatory elements of a normal gene might be replaced, 

resulting in abnormal expression of a normal gene product [2, 5]; 

or two genes might be placed together and form a chimeric fusion 

gene [6, 7]. A previous study has shown that translocations that lead 

to gene fusion account for 20% of human cancer morbidity [2]. 

Thus, identifying translocation breakpoints sensitively and 

accurately is essential to pinpoint the genes being affected and lead 

to valid cancer diagnosis and treatment.  

Traditionally, translocations are detected using the Next-

Generation Sequencing (NGS) short-reads with methods devised 

for distinguishing genuine SV signals from the background noise 

[8-10]. These methods are based on one or more information on 

“read-depth”, “pair-end”, “split-read”, and “assembly” [9]. 

However, the short read length of NGS (ranging from 100bp to 

250bp) induces poor read alignments in the low-complexity regions 

[11], leading to an excessive amount of spurious translocations 

being detected among these regions. Insertions and deletions are 
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easily misreported as translocations. It is estimated that more than 

80% of the translocations detected from Illumina short-reads are 

false positives [12]. 

Single molecular sequencing that produces long read promises 

more reliable and accurate detection of SVs [13]. Pacific 

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) 

are two major technology providers and can produce reads 

averaging several thousand base-pairs or even up to 2Mbp for ONT 

[14]. Longer read length results in more accurate alignments in the 

low-complexity regions that should, in turn, leads to more high-

confidence alignments spanning SV breakpoints to be produced. 

However, challenges remained, with the top one being to 

accommodate the very high per-base error rate in the long reads 

(13–15% in PacBio and 5-20% in ONT) [15].  

Two key steps are crucial to the quality of SV detection using 

long reads. The first step is to align the long reads to a reference 

genome rapidly and correctly. A few aligners were developed for 

this purpose, including LAST [16], BLASR [17], GraphMap [18], 

NGMLR [12] and minimap2 [19]. Specifically designed for 

aligning the PacBio reads, NGMLR uses an SV-aware seeding 

strategy and a convex gap cost model to compute precise 

alignments. It achieved the best alignment accuracy on PacBio 

reads [12]. In contrast, aligning ONT reads is much more 

computational demanding due to longer average read length and 

higher per-base error rate at homopolymers. Minimap2 effectively 

sped up aligning ONT reads by doing the split-read alignment and 

employing concave gap cost for long insertions and deletions. With 

comparable accuracies, minimap2 is over 30 times faster than the 

other long-read aligners [19]. Later in our results, NGMLR and 

minimap2 were used for aligning PacBio and ONT reads, 

respectively. 

The second step is to detect multiple classes of SV including 

translocation using the alignment results. Multiple methods for 

detecting SVs using long reads were released recently, with one or 

more limitations applied. Most of the methods apply to either 

PacBio or ONT reads, and require a specific aligner [14]. For 

example, PBHoney [20] works for PacBio with BLASR alignments 

only; Picky [21] and NanoSV [22] were designed for ONT reads 

and require using the LAST aligner. The limitation of these 

methods hindered them from leveraging the power of the new 

aligners such as NGMLR and minimap2 and being applied to new 

types of sequencing reads. Sniffles removed these limitations as it 

implements a parameter estimation step to fit its error model to 

different aligners and sequencing technologies [12]. 

However, compared to detecting unbalanced SV classes such as 

insertion and deletion, translocations were usually detected with 

much lower sensitivity and accuracy [12]. Existing methods 

commonly detect translocations base on split reads. Whether a 

translocation could be identified confidently depends on the 

number of read alignments consistently supporting a set of potential 

breakpoints. However, due to the complexities in real sequencing 

data and the limitation of alignment algorithms, reads are often 

misaligned around the translocation breakpoints. As a result, 

translocations without enough alignment supports are being 

ignored or mistaken for deletions or inversions. 

In this study, we present Translocator, a robust and accurate 

translocation detecting method for both PacBio and ONT reads. 

Translocator detects misaligned reads around candidate 

translocation breakpoints and tries to realign them to increase 

potential supports at the breakpoints to rescue translocations with 

weak supports in low-complexity regions or with low sequencing 

depth coverage. Translocator was implemented in Sniffles’ 

framework to leverage its high efficiency and compatibility with 

various aligners.  

To evaluate the performance of Translocator, we benchmarked 

it using real NA12878 PacBio, and ONT reads on simulated 

translocations with length ranging from 100 to 3,000 base-pairs 

embedded into the GRCh38 reference genome. Compared with 

state-of-the-art methods including Sniffles and PBSV [23], 

Translocator performed outstandingly. On ONT data, Translocator 

improved the recall from 48.2% to 87.5% and the precision from 

88.7% to 92.7%. We evaluated Translocator at multiple 

subsampled depth coverages (from 5-fold to 30-fold) and it 

outperformed existing methods consistently. At 10-fold, 



 

Translocator was able to detect more than 70% of the embedded 

translocations with over 90% precision, enabling flexible and cost-

efficient translocation detection using long reads. Finally, we 

benchmarked Translocator on real cancer cell-line datasets with 

PCR validated translocations and also observed outstanding 

performance than other existing methods. 

2 Results 

2.1 Performance on simulated translocations 

embedded into the reference genome 

Translocator improves upon existing translocation detection 

methods by identifying suboptimally aligned reads and realigning 

them to achieve better translocation detection performance. We 

have shown in Figure 1 two possible scenarios of suboptimally 

aligned reads at the breakpoints of a translocation, including 1) 

undivided reads that are supposed to be divided, causing excessive 

amount of erroneous mismatch and small indel signals (noisy 

regions) at the translocation (Figure 1a, b), and 2) reads clipped at

 the breakpoints that the clipped parts should be aligned but did not, 

causing a sharp decrease in-depth coverage at the translocation 

(Figure 1c, d). Both scenarios lead to insufficient support against 

noise for confidently detecting a translocation. To solve the 

problem, Translocator scans all read alignment and identifies 

questionable regions with potential translocation signals. Then it 

retrieves the read sequences from these regions and tries to find 

optimal alignment for them via both local realignment and global 

remapping (more details are available in the Methods section). 

We benchmarked Translocator against two state-of-the-art 

methods including Sniffles [12] and PBSV [23]. Similar to the 

method used for benchmarking Sniffles against other methods in 

Sedlazeck et al. [12], we randomly simulated 2,800 translocations   

(~1 translocation per 1Mbp in the human genome excluding the ‘N’ 

gaps) with length ranging from 100 to 3,000 base-pairs and 

embedded them at random positions of the GRCh38 reference 

genome (more details are available in the Methods section). Then 

we applied Translocator, Sniffles, and PBSV on the real PacBio or 

ONT sequencing reads of NA12878 [24] against the modified   

Table 1: Benchmarking results of 2,800 simulated homozygous translocations on two datasets (PacBio and ONT) and 

three methods (Sniffles, PBSV, and Translocator). Minimum supporting reads for calling a translocation was set as 10 

as recommended by Sniffles. TP: True Positives. FN: False Negatives. FP: False Positives. 

  

Speed 

(min) TP FN FP Precision Recall F1-score 

ONT 

Sniffles 108 1,349 1,451 186 87.88% 48.18% 62.24% 

PBSV 130 668 2,132 85 88.71% 23.86% 37.60% 

Translocator 226 2,450 350 192 92.73% 87.50% 90.04% 

PacBio 

Sniffles 111 2,618 182 56 97.91% 93.50% 95.65% 

PBSV 262 1,970 830 1,044 65.36% 70.36% 67.77% 

Translocator 169 2,752 48 76 97.31% 98.29% 97.80% 

Figure 1: IGV screen capture of four random examples of suboptimal alignments and their realignment results. 



 

 

 

 

GRCh38 reference genome. The NA12878’s innate translocations 

were distinguished and removed from our subsequent analyses (See 

Methods). The advantage of embedding simulated translocations 

into the reference genome instead of the sequencing reads is that it 

retains the full sequencing error profile by using real sequencing 

reads. The disadvantage is that only homozygous translocations can 

be simulated. So, in this section, we focused on establishing the 

baseline performance of different methods on homozygous 

translocations. Later in the “real cancer cell-line datasets” section, 

PCR validated heterozygous translocations were used for 

benchmarking.  

We used two real datasets of NA12878, including a 43.0-fold 

ONT dataset [25] (rel6, Jain et al.), and a 44.2-fold PacBio dataset 

[26] (Mt. Sinai, Zook, et al.). For read alignment, we used NGMLR 

for PacBio and minimap2 for ONT, respectively. The results are 

shown in Table 1. Translocator outperformed Sniffles and PBSV 

on both the ONT and PacBio datasets. On the ONT dataset, 

Translocator achieved 90.04% F1-score, which is 27.80% higher 

than Sniffles and 52.44% higher than PBSV. While the precision of  

Translocator is just a few percent higher (92.73% vs. 87.88% and 

88.71%), the recall has been tremendously improved (87.50% vs. 

48.18% and 23.86%), confirming the power of local realignment 

and global remapping. On the PacBio dataset, the conclusion is 

similar. Translocator achieved the best F1-score (97.80% vs. 

95.65% and 67.77%) and improved the recall significantly (98.29% 

vs. 93.50% and 70.36%). 

2.2 Performance at lower depth coverages 

The sequencing cost of long reads is continuously decreasing. 

Using ONT as an example, its massive-parallel sequencer 

PromethION can yield over 30-fold of a human genome on a 

flowcell, and the cost of a flowcell can be as low as 625 U.S. dollars 

[27]. However, the portable and most prevalent sequencer up to 

date is MinION. It costs (as low as) 475 U.S. dollars per flow cell 

and yields up to 30Gb (~10-fold of a human genome). In order to 

evaluate Translocator’s robustness in different settings, we 

benchmarked Translocator against Sniffles and PBSV at lower 

depth coverages. We subsampled both the NA12878 PacBio and 

ONT datasets to 5-, 10-, 15-, 20- and 30-fold. We reused the 2,800 

simulated translocations generated in the last section for 

benchmarking. For all methods, the minimum supporting reads for 

calling a translocation was set to one-third of the depth coverage. 

The results are shown in Figure 2. Translocator consistently 

outperformed Sniffles and PBSV on both datasets at different depth   

Figure 2: Benchmarking results of 2,800 simulated homozygous translocations on two datasets (PacBio and ONT) and 

three methods (Sniffles, PBSV, and Translocator) at five subsampled depth coverages (5-, 10-, 15-, 20- and 30-fold). 



 

coverages. On the ONT dataset, Translocator detected over one 

time more translocations than the other two methods, while having 

lower false positive numbers than Sniffles especially at lower 

coverages. At 10-fold coverage, Translocator was still able to 

detect 70.1% of the translocations with a high precision at 90.4%. 

The results are in line with our expectations because due to a higher 

per-base error rate in ONT reads, we observed over half of the reads 

suboptimally aligned to the breakpoints of a translocation. At lower 

depth coverages, the absolute number of correctly aligned reads 

that can define the breakpoints of a translocation drops. Thus, the 

performance of Sniffles and PBSV suffered. With local 

realignment and global remapping, Translocator fixed the 

suboptimally aligned reads as much as possible, led to a significant 

increase in the recall rate at lower depth coverages. 

On the PacBio dataset, Translocator also performed the best. 

Compared to PBSV, both Translocator and Sniffles controlled the 

number of false-positives well. Translocator has an edge over 

Sniffles on sensitivity, especially at lower depth coverages. At 10-

fold coverage, Translocator detected 84.1% of the translocations 

with 97.6% precision, while Sniffle detected 71.6% of the 

translocations with 98.7% precision. We conclude that by using 

Translocator for both the ONT and PacBio datasets, 10-fold depth 

coverage is enough for detecting over 70% of the translocations 

over 90% precision. 

2.3 Performance on PCR validated translocations 

in real cancer cell-line datasets 

To further demonstrate Translocator’s performance on real 

datasets with heterozygous translocations, we benchmarked using 

PCR-validated translocations in two real cancer cell-line datasets. 

One is a 4.5-fold ONT dataset of the HCC1187 cell-line with 17 

PCR validated translocations from Gong et al. [21]. Another is a 

60-fold PacBio dataset of the SK-BR-3 cell-line with 26 PCR 

validated translocations from Nattestad et al. [28]. The results are 

shown in Table 2. 

While the PCR validated translocations are just a small subset 

of translocations in the two cancer cell lines, we have shown both 

the “total # of translocations detected” and “# of PCR validated 

translocations detected”. On the 4.5-fold HCC1187 ONT dataset, 

although the depth coverage is low to call heterozygous 

translocations, Translocator consistently outperformed Sniffles and 

PBSV (9 vs. 8 and 5). On the 60-fold SK-BR-3 PacBio dataset, 

Translocator detected 23 out of 26 PCR validated translocators, 

while Sniffles and PBSV detected only 21 and 15 translocations, 

respectively. We conclude that Translocator is capable of detecting 

heterozygous translocations in real datasets and consistently 

outperformed other state-of-the-art methods. 

3 Conclusion and discussions 

In this study, we present Translocator, a method to detect 

translocations sensitively and accurately using single-molecule 

sequencing long reads. Translocator improves upon the existing 

methods by identifying suboptimally aligned reads at the 

breakpoints of candidate translocations, then use local realignment    

and global remapping to find the optimal alignment of the reads to 

improve the signal of supports against noise at the breakpoints. To 

benchmark Translocator and other methods, we analyzed real 

NA12878 PacBio and ONT long reads against a modified GRCh38 

reference genome with 2,800 translocations of various lengths 

inserted at random locations. Translocator significantly 

outperformed other state-of-the-art methods including Sniffles and 

PBSV, especially on the recall rate. Benchmarks at subsampled 

depth coverages have shown Translocator outperformed existing 

methods consistently even with depth as low as 5-fold. At last, we 

applied Translocator to two real cancer cell-line datasets with PCR-

validated heterozygous translocations, and it again outperformed 

other methods significantly. 

We focused on translocation detection in this study, but we 

believe that both the local realignment and global remapping 

techniques are also applicable to improving the performance of 

detecting other classes of balanced SV, including inversion and 

nested SVs. Although we benchmarked heterozygous 

translocations using real cell-line datasets in this study, the 

simulated translocations remained homozygous constrained by our 

current method for generating a dataset with a large number of 

translocations with known positions and meanwhile retaining a full 

error profile of the sequencing reads. We look forward to devising 

a simulation strategy to address heterozygous translocations while 

fulfilling other requirements.  

  

Table 2: Benchmarking results of PCR validated translocations in two real cancer cell-line datasets. 

  Translocator Sniffles PBSV 

HCC1187 ONT (4.5-fold) 

total # of translocations detected 538 479 206 

# of PCR validated translocations detected (out 

of 17) 
9 8 5 

SKBR3 PacBio (60-fold) 

total # of translocations detected 724 599 1016 

# of PCR validated translocations detected (out 

of 26) 
23 21 15 



 

 

 

 

4 Methods 

4.1 An overview of Translocator 

Translocator takes read alignments as input and outputs 

translocations together with other SVs in the VCF format. The 

workflow of Translocator is depicted in Figure 3. While we use 

Sniffles to provide basic functions for processing input and output, 

we also use it for calling SV classes other than translocation. 

Translocator finds both noisy reads and clipped reads in the 

alignments. The noisy reads are more likely to be suboptimally 

aligned. Then Translocator clusters the noisy reads into regions to 

be further worked at. Those noisy or clipped reads around the 

candidate breakpoints are realigned using local realignment. The 

remaining reads are globally remapped to recover their correct 

alignments. Finally, the translocations detected by Translocator and 

other classes of SV from Sniffle are combined, with the SVs 

overlapping with a translocation being removed.  

4.2 Detecting noisy reads 

To find noisy reads with blocks of excessive errors, 

Translocator scans through the alignment mismatches and indels 

extractable from the CIGAR and MD strings. A sliding window 

algorithm was implemented to find the blocks with excessive 

errors. We keep track of cumulated mismatches and small indels 

100bp trailing each position. If the cumulated mismatches and 

small indels go beyond 50 (50% error rate), Translocator marks the 

block and extend it both forward and backward until the error rate 

goes below 30% to determine the farthest starting and ending 

position. 

4.3 Local realignment 

If the starting or ending position of a block with excess errors is 

close to candidate breakpoints (within 20bp), Translocator will 

perform local realignment of the reads in the block. These 

breakpoints are usually supported by one or more reads correctly 

split and aligned, but too few if compared against the noises. 

Translocator first determines the consensus of a breakpoint for 

realignment. Then Translocator extracts the segments of the 

suboptimally aligned reads in the block and aligns them to the 

destination using "overlap alignment" in SeqAn [29] to allow free 

end gaps. If the mismatch and small indel bases in the block go 

below 20% after realignment, Translocator considers the 

realignment successful and updates the alignments accordingly. 

4.4 Global remapping 

If no candidate breakpoint is found near a block, we remap the 

reads in the block globally to find their correct alignments. We 

found this method most helpful to the ONT datasets because almost 

all the reads covering translocations shorter than 500bp were found 

misaligned. Translocator first filters the blocks without enough 

read supports (default to 10). Then it maps the reads in the blocks 

to the reference genome again using minimap2 [19]. A successful 

remapping is considered having mapping quality ≥3, read coverage 

in a single alignment ≥80%, and clipped bases <20bp in at least an 

Figure 3: The workflow of Translocator. 



 

end. After global remapping, the number of supporting reads for 

each candidate breakpoint is updated. Some breakpoints without 

enough read supports will be rescued in this process. 

4.5 Combine and filter SVs 

Finally, Translocator combines the translocations it called with 

other classes of SV called by Sniffles. The deletions and inversions 

called by Sniffles that overlaps with the translocations called by 

Translocator are regarded as negative and removed. 

4.6 Generating simulated translocations for 

benchmarking 

To best retaining the error profile of the real sequencing data, 

we analyzed real NA12878 reads against a modified GRCh38 

human reference genome. We introduced 2,800 non-overlapping 

translocations into the referenced. Meanwhile, we also introduced 

1,400 insertions, 1,400 deletions and 1,400 inversions as noises. 

We used SURVIVOR [30] for SV simulation. To remove 

NA12878’s innate translocations from benchmarking, we 

identified them by analyzing the real NA12878 reads against the 

original GRCh38 reference. We considered an identified 

breakpoint within 10bp from the known position as a match. 

4.7 Benchmarking PCR validated heterozygous 

translocations in real cancer cell-line datasets 

We retrieved the SK-BR-3 PacBio reads from SRA accession 

number SRX4220390, and HCC1187 ONT reads (12 runs) from 

accession number SRP115881. For the PCR validated 

heterozygous translocations in the two cancer cell lines, we 

considered an identified breakpoint within 1,000bp from the known 

position as a match. 

4.8 Code Availability 

The source code and documentation are available at 

https://github.com/HKU-BAL/Translocator. 
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